Как строить сетевой график выполнения работ
Перейти к содержимому

Как строить сетевой график выполнения работ

  • автор:

Сетевой график производства работ (книга)

Неотъемлемым элементом организации производства различных работ на всех этапах и уровнях является календарное планирование. Достижение поставленных целей возможно только после того, как будет тщательно продумана последовательность выполнения работ, рассчитано необходимое количество машин, рабочих и других ресурсов. Руководитель организации должен ориентироваться в ситуации и четко представлять что нужно делать в ближайшие дни и месяцы даже если обстановка будет постоянно меняться. Для этих целей разрабатывают сетевой график производства работ.

Сетевой график производства работ: что это

Сетевой график производства работ (книга) – это графическое изображение пошагового выполнения взаимосвязанных работ на объекте с указанием их продолжительности и общих сроков. При этом на графике выделяют узкие (критические) места. Документ не имеет унифицированной формы.

Использование сетевых графиков имеет важное преимущество перед линейными графиками: они отображают всю динамику и сложность производственного процесса и наглядно демонстрируют ход выполнения работ. Кроме того, сетевой график производства работ выполняет такие функции:

  • показывает взаимосвязь между работами и технологической последовательностью их выполнения;
  • позволяет выявить работы, от выполнения которых зависит продолжительность всего рабочего процесса;
  • делает возможным использование ЭВМ для расчетов параметров графика.

По своей сути данный график является графом, состоящим из множества вершин (изображаются в виде кружков или квадратов) и ребер (направленные отрезки между кружками или квадратами, соединяющие их). Вершины используются для обозначения событий или состояния объекта на определенный момент времени, ребрами обозначают различные работы. На практике используется и другой вариант представления графика, в котором вершины обозначают работы, а ребра используются для отображения взаимосвязей между ними. В самом упрощенном виде сетевой график выглядит примерно так:

Когда составляется сетевой график

Чаще всего сетевой график производства работ составляется для проектов, в состав которых входит набор взаимосвязанных действий. Обычно его используют в строительной сфере. Данный график поможет руководителю объекта определить сроки завершения строительства, выявить возможные варианты сокращения сроков, осуществлять контроль за ходом работ.

Из каких структурных элементов состоит график:

  • Работа. Здесь подразумевается технологический процесс, который приводит к достижению определенного запланированного результата. Он требует материальных затрат и затрат трудовых ресурсов, а также затрат времени. На графике работы изображают в виде штриховых линий.
  • Событие. Отображает окончание одной или нескольких работ, которые необходимы для начала следующих (выходящих из данного события) работ. События бывают начальными и исходными.
  • Путь. Любая последовательность действий, при которой конечное событие каждого действия совпадает с начальным событием последующего действия. Продолжительность пути рассчитывают как сумму продолжительностей составляющих его работ.
  • Ожидание. Процесс, который требует затрат времени и не потребляет при этом трудовых и материальных ресурсов. Он сопровождается перерывами, возникшими из-за технологических и организационных причин.
  • Зависимость. Этот параметр отображает технологическую или организационную взаимосвязь работ.

Правила составления графика

Сетевой график производства работ должен разворачиваться слева направо.

Стрелки должны отображать отношения предшествования и следования. Они могут пресекаться.

К выполнению каждой следующей операции можно приступать только после того, как будут выполнены предшествующие ей операции.

Номер каждой последующей операции должен быть больше, чем номер любой предшествующей операции.

Недопустимо зацикливание хода выполнения установленного комплекса работ, т. е. на графике не должны образовываться замкнутые контуры.

На графике не должно быть условных переходов от одной операции к другой. Иными словами, не должно быть формулировок вида «Если удастся достичь успеха – следует переходить к подведению коммуникаций. Если нет – ничего не предпринимать».

Каждая работа должна быть заключена между двумя событиями. Недопустимо, чтобы на графике присутствовали работы с одинаковыми кодами.

Как построить сетевой график производства работ: последовательность действий

  • Определить основную цель планирования (например, строительство торгового центра).
  • Выявить ограничения. Это может быть срок выполнения работ, стоимость или какие-либо внешние условия.
  • Определить состав работ, необходимых для достижения поставленной цели. Их можно написать на отдельных стикерах или карточках.
  • Определить продолжительность выполнения каждой операции. Также можно указать необходимые ресурсы, оборудование и ответственных лиц.
  • Определить, какая именно задача должна быть выполнена в первую очередь. Карточку с этой задачей размещают в верхней части сетевого графика или слева. После этого определяют последовательность выполнения оставшихся задач.
  • Отобразить связи между операциями с помощью стрелок.
  • Определить раннее начало и раннее окончание для каждого действия. При этом постепенно передвигаются от первой операции к последней. В аналогичном порядке определяют позднее начало и позднее окончание для каждой задачи.
  • Рассчитать резерв времени для каждой операции по формуле «позднее начало – раннее начало» или «позднее окончание – ранее окончание».
  • Определить критический путь. Таковым считается нулевой резерв времени для выполнения задачи. На графике его выделяют красным цветом. Для сокращения длительности проекта рекомендуется оптимизировать операции, лежащие на критическом пути.

Процесс построения сетевых графиков может быть полностью автоматизирован.

Более полную информацию по теме вы можете найти в КонсультантПлюс.
Пробный бесплатный доступ к системе на 2 дня.

Пример построения сетевого графика

В одной из фирм решили внедрить систему компьютерной информации. Назначенный руководитель проекта составил список действий (работ), которые надо для этого выполнить, и указал последовательность их выполнения и продолжительность, приведенную в таблице. Постройте сетевой график.
Указание:
a) в сети должно быть одно исходное и одно завершающее событие;
b) присмотревшись к перечню работ, вы обнаружите, что работы А, В и С не имеют
предшествующих работ (у них только последующие), значит, их можно выполнять
параллельно, начиная от исходного события;
c) избегайте пересечения путей;
d) направляйте работы слева направо;
e) на графике должно быть как можно меньше фиктивных работ.

Работа Продолжительность работы t, дн. Последующая работа
A 4 D, E
D 3 O, N
O 6 Конец
E 2 K
K 8 P
N 1 P
P 9 Конец
B 6 F, G, H
F 7 K
G 4 L, M
L 2 Конец
C 5 I
H 7 I
I 3 M
M 1 Конец

Масштабный сетевой график

  1. Вычислить табличным методом все основные характеристики работ и событий, найти критический путь и его продолжительность.
  2. Построить масштабный сетевой график.
  3. Оценить вероятность выполнения всего комплекса работ за 30 дней.
  4. Оценить максимально возможный срок выполнения всего комплекса работ с вероятностью 95%.
Код работы ( i,j) Продолжительность
tmin (i,j) tmax (i,j)
1,2 5 10
1,4 2 7
1,5 1 6
2,3 2 4,5
2,8 9 19
3,4 1 3,5
3,6 9 19
4,7 4 6,5
5,7 2 7
6,8 7 12
7,8 5 7,5

Решение находим с помощью сервиса Сетевая модель . В нашем задании продолжительность выполнения работы задаётся двумя оценками – минимальная и максимальная. Минимальная оценка характеризует продолжительность выполнения работы при наиболее благоприятных обстоятельствах, а максимальная tmax(i,j) – при наиболее неблагоприятных условиях. Продолжительность работы в этом случае рассматривается, как случайная величина, которая в результате реализации может принять любое значение в заданном интервале. Такие оценки называются вероятностными (случайными), и их ожидаемое значение tож(i,j) оценивается по формуле
tож(i,j)=(3 tmin(i,j)+2 tmax (i,j))/5
Для характеристики степени разброса возможных значений вокруг ожидаемого уровня используется показатель дисперсии:
S 2 (i,j)=0,04(tmax(i,j)-tmin(i,j)) 2
Рассчитаем ожидаемое значение и показатель дисперсии.
tож(1,2)=(3*5+2*10)/5=7
tож(1,4)=(3*2+2*7)/5=4
tож(1,5)=(3*1+2*6)/5=3
tож(2,3)=(3*2+2*4,5)/5=3
tож(2,8)=(3*9+2*19)/5=13
tож(3,4)=(3*1+2*3,5)/5=2
tож(3,6)=(3*9+2*19)/5=13
tож(4,7)=(3*4+2*6,5)/5=5
tож(5,7)=(3*2+2*7)/5=4
tож(6,8)=(3*7+2*12)/5=9
tож(7,8)=(3*5+2*7,5)/5=6
S 2 (1,2)=0,04*(10-5) 2 =1
S 2 (1,4)=0,04*(7-2) 2 =1
S 2 (1,5)=0,04*(6-1) 2 =1
S 2 (2,3)=0,04*(4,5-1) 2 =0,25
S 2 (2,8)=0,04*(19-9) 2 =4
S 2 (3,4)=0,04*(3,5-1) 2 =6,25
S 2 (3,6)=0,04*(19-9) 2 =4
S 2 (4,7)=0,04*(6,5-4) 2 =0,25
S 2 (5,7)=0,04*(7-2) 2 =1
S 2 (6,8)=0,04*(12-7) 2 =1
S 2 (7,8)=0,04*(7,5-5) 2 =0,25 Полученные данные занесем в таблицу.
Таблица – Сетевая модель.

Используя полученные данные, мы можем найти основные характеристики сетевой модели табличным методом, критический путь и его продолжительность.
Таблица – Табличный метод расчета сетевого графика.

КПР Код работы (i,j) Продолжительность работы t(i, j) Ранние сроки Поздние сроки Резервы времени
tрн(i,j) tро(i,j) tпн(i,j) tпо(i,j) Rп Rc
1 2 3 4 5 6 7 8 9
0 1,2 7 0 7 0 7 0 0
0 1,4 4 0 4 17 21 17 8
0 1,5 3 0 3 19 22 19 0
1 2,3 3 7 10 7 10 0 0
1 2,8 13 7 20 19 32 12 12
1 3,4 2 10 12 19 21 9 0
1 3,6 13 10 23 10 23 0 0
2 4,7 5 12 17 21 26 9 0
1 5,7 4 3 7 22 26 19 10
1 6,8 9 23 32 23 32 0 0
2 7,8 6 17 23 26 32 9 9

Таким образом, работы критического пути (1,2),(2,3),(3,6),(6,8). Продолжительность критического пути Ткр=32.

Рисунок — Масштабный график сетевой модели
Для оценки вероятности выполнения всего комплекса работ за 30 дней нам необходима следующая формула: P(tкр где Z=(Т-Ткр)/Sкр
Z- нормативное отклонение случайной величины, Sкр – среднеквадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути. Соответствие между Z и Ф(Z) представлено в таблице.
Таблица — Таблица стандартного нормального распределения.

Z F(Z) Z F(Z) Z F(Z)
0 0.0000 1.0 0.6827 2.0 0.9643
0.1 0.0797 1.1 0.7287 2.1 0.9722
0.2 0.1585 1.2 0.7699 2.2 0.9786
0.3 0.2358 1.3 0.8064 2.3 0.9836
0.4 0.3108 1.4 0.8385 2.4 0.9876
0.5 0.3829 1.5 0.8664 2.5 0.9907
0.6 0.4515 1.6 0.8904 2.6 0.9931
0.7 0.5161 1.7 0.9104 2.7 0.9949
0.8 0.5763 1.8 0.9281 2.8 0.9963
0.9 0.6319 1.9 0.9545 2.9 0.9973

Критический путь проходит по работам (1,2)(2,3)(3,6)(3,8).
Дисперсия критического пути:
S 2 ­(Lкр)= S 2 (1,2)+ S 2 (2,3)+ S 2 (3,6)+S 2 (6,8)=1+0,25+4+1=6,25
S(Lкр)=2,5
p(tкр<30)=0,5+0,5Ф((30-32)/2,5)=0,5-0,5Ф(0,8) = 0,5-0,5*0,5763=0,5-0,28815=0,213
Вероятность того, что весь комплекс работ будет выполнен не более чем за 30 дней, составляет 21,3%.
Для определения максимально возможного срока выполнения всего комплекса работ с надежностью 95% будем использовать следующую формулу: T=Ткр+Z*Sкр Для решения поставленной задачи найдем значение аргумента Z, которое соответствует заданной вероятности 95% (значению графы Ф(Z) 0,9545*100% в таблице 5 соответствует Z=1,9).
T=32+1,9*2,5=36,8
Максимальный срок выполнения всего комплекса работ при заданном уровне вероятности 95% составляет всего 36,8 дня.

Профессии будущего

РБК Тренды изучили прогнозы российских и зарубежных футурологов, и составили список самых востребованных профессий в ближайшие 30 лет. Это профессии из 19 отраслей: от медицины и транспорта до культуры и космоса

Налоговый вычет на обучение

√ 120 тыс. руб. — максимальная сумма расходов на обучение
√ вычет от государства
√ вычет от работодателя

Требуются авторы студенческих работ!

  • регулярный поток заказов;
  • стабильный доход

  • Задать вопрос или оставить комментарий
  • Помощь в решении
  • Поиск
  • Поддержать проект

Сетевой график производства работ

Расчет сетевых графиков проекта (дорожная карта) сводиться к численному определению его параметров. Поэтому сначала перечислим их.

При расчете календарных сетевых графиков в строительстве определяются следующие параметры:

— ранние начала и окончания производства работ (например ремонта, реконструкции и т.д.);

— поздние начала и окончания выполнения работ;

— продолжительность критического пути;

— общие и частные резервы работ, распределение ресурсов.

За расчетную схему (рис. 18.8) выберем расположение работ, закодирован­ных буквами: h — предшествующая работа, i — рассматриваемая работа,j — после­дующая работа.

Расчетная модель

Рис. 18.8 Расчетная модель

Раннее начало работы — самый ранний из возможных сроков начала рабо­ты, который обуславливается выполнением всех предшествующих работ.

Раннее начало работы (рис. 18.9) равно продолжительности максимально­го пути от исходного события сетевого графика производства до начального события данной работы:

Модель расчета ранних начал

Рис. 18.9 Модель расчета ранних начал

Раннее окончание работы — самый ранний из возможных сроков окончания работы. Оно равно сумме раннего начала работы и ее продолжительности:

Раннее окончание работы

Для начальных (исходных) строительных работ:

— раннее начало принимается равным 0;

— раннее окончание численно равно продолжительности работы. Максимальное раннее окончание одной из завершающих работ определяет продолжительность критического пути.

Позднее начало работы — самый поздний допустимый срок начала работы, при котором планируемый срок достижения конечной цели не меняется.

Позднее окончание работы определяется разностью между продолжитель­ностью критического пути и продолжительностью максимального пути от ко­нечного события данной работы до завершающего события сетевого графика управление проектами.

Позднее окончание любой работы (рис. 18.1 О) равно наименьшему из поздних начал последующих работ:

Модель расчета поздних окончаний

Рис. 18.10 Модель расчета поздних окончаний

Позднее начало работы равно разности между величинами ее позднего окончания и продолжительности.

Для завершающих работ сетевого графика:

— позднее окончание равно величине продолжительности критического пути:

позднее окончание

= позднее начало завершающей работы равно разности между продол­жительностью критического пути и продолжительностью данной работы:

Общий (или полный) резерв времени работы R;-1 (рис. 18.11) — это макси­мальное время, на которое можно увеличить продолжительность данной рабо­ты или перенести ее начало без увеличения продолжительности критического пути. Он равен разности между одноименными поздними и ранними парамет­рами этой работы:

Модель расчета общих резервов

Рис. 18.11 Модель расчета общих резервов

Частный резерв времени (рис. 18.12) — это максимальное время, на которое можно увеличить продолжительность данной работы или перенести ее начало без изменения ранних сроков начала последующих работ. Он равен разности между ранним началом последующей работы и ранним окончанием данной работы:

Модель расчета частных резервов

Рис. 18.12 Модель расчета частных резервов

Частный резерв времени отличается от нуля, если в конечное событие ра­боты входят две и более работы.

Методы расчета и выполнения сетевых графиков строительной организации

Новые сетевые графики процессов можно рассчитывать и разрабатывать с помощью компьютерной техники и вручную оптимизируя труд. В настоящее время известно несколько методов расчета и составления сетевых графиков вручную: табличный метод; расчет на сетевом графике — четырехсекторный метод; метод дроби; метод потенциалов и др.

Классическим методом , положившим начало теории расчета сетевых гра­фиков и их реализации, является табличный метод, или, как говорят, алгоритм расчета сетево­го графика по таблице.

Пример графика для расчета табличным методом приведен на рис. 18.13. В этом случае определение параметров элементов сетевого графика выполняется в таблице.

график для расчета табличным методом и методом потенциалов

Рис. 18.13 Пример графика для расчета табличным методом и методом потенциалов

Заполнение таблицы ведется в следующем порядке.

1) В первые три графы заносят исходные данные по каждой работе. Необходимо последовательно записывать все работы, выходящие из первого события ( по часовой стрелке), затем — все работы, выходящие из второго события:, и т.д.

2) Производят расчет ранних параметров работ построчно сверху вниз.

­3) Определяют продолжительность критического пути, равная максималь­ному из ранних окончаний завершающих работ.

4) Рассчитывают поздние параметры работ. Расчет ведется построчно сни­зу вверх, от завершающих работ до исходных.

5) Определяют общие и частные резервы времени (их можно определить по каждой работе вразбивку).

Определяют перечень работ, составляющих критический путь, т.е. работ, не имеющих резервов времени.

При расчете сетевых графиков табличным методом заполняют следующую таблицу (табл. 18.1).

Расчет сетевого графика

Расчет сетевого графика

В графу 3 заносят шифр (код) каждой работы, запись ведут последова­тельно, начиная с первого события. Когда из события выходят несколько ра­бот, запись ведут в порядке возрастания номеров их конечных событий. После этой процедуры в графу 2 записывают номера событий, предшествующих каж­дой работе.

Следующей заполняют графу 4. Против каждой работы, записанной в гра­фе 3 из сетевого графика, проставляют её продолжительность t.

Графы 5 (раннее начало работы ТРН) и 6 (раннее окончание работы ТРН за­полняются одновременно. У работ 1-2 и 1-3 предшествующих событий нет; следовательно, их раннее начало равно нулю. Раннее окончание работы равно сумме его раннего начала и продолжительности . Таким образом, в графу 6 вно­сят сумму цифр граф 4 и 5. Для работы 2-4 раннее начало равно раннему окон­чанию предшествующей работы, т.е. работы 1-2 (в графе 2 записано предшест­вующее событие 1 ); следовательно, раннее начало работ, начинающихся с события 2 (2-3, 2-4), также равно 5 дням. Прибавляя к ранним началам работ их продолжительности, получим их раннее окончание. Если у работы есть два и более предшествующих события (например, работа 4-6), то в этом случае вы­бирают максимальное значение раннего окончания этих работ и заносят в гра­фу 5, и на ее основе определяют ранее окончание.

Максимальное раннее окончание последней работы равно величине кри­тического пути.

Дальше заполняют графы 7 и 8. Позднее начало ТПН и окончание ТПО запи­сываем в таблицу 18.1, начиная с конца графы.

Критический путь , а следовательно, и позднее окончание завершающей работы, равен 16 дням. Вносим эту цифру в строку 8 графы 8. Позднее начало работы равно разности его позднего окончания и продолжительности.

Общий резерв R (графа 9) определяют как разность между числами в гра­фах 8 и 6 или 7 и 5.

Частный резерв r (графа 10) подсчитывают как разность между ранним на­чалом последующей работы и ранним началом данной. При заполнении данной графы необходимо учитывать следующее, если в конечное событие данной ра­боты входит только одна стрелка, то частный резерв ее равен нулю. Для работ, не лежащих на критическом пути, но входящих в события, лежащие на нем, общие и частные резервы численно равны. Частные и общие резервы работ, лежащих на критическом пути, равны нулю.

Правильность расчета сетевого графика подтверждают проверкой:

— ранние параметры никогда не превосходят по численному значению поздние параметры;

— критический путь должен представлять собой непрерывную последова­тельность работ от исходного события до завершающего;

— величина частного резерва времени работы не должна превосходить ве­личину общего резерва времени;

— позднее начало одной из исходных работ обязательно должно быть ну­левым.

Расчет сетевых графиков методом потенциалов

Потенциалом i-го события (ТjП ) называют величину наиболее продолжи­тельного пути от данного события до завершающего:

Потенциал события (рис. 18.14) показывает, сколько дней осталось от дан­ного события до завершения всех работ планируемой программы. Потенциал определяют последовательно, начиная от завершающего события сети.

В качестве примера рассмотрим тот же построенный сетевой график, размещенный на рис. 18.13. Расчет (рис. 18.15) начинают с завершающего события 6, потенциал ко­торого равен О. В верхний сектор ставим прочерк, в правый записываем О и пе­реходим к последующему событию.

Запись в секторах при расчете методом потенциалов

Рис. 18.14 Запись в секторах при расчете методом потенциалов

Пример расчета методом потенциалов

Рис. 18.15. Пример диаграммы сетевого графика и расчета методом потенциалов

( номера событий соответствуют рис. 18.1 З)

Потенциал события 5 (продолжительность работы 5-6) равен 5 дням. Циф­ру 5 записываем в правый сектор события 5, цифру 6 — в его верхний сектор.

Потенциал события 4 Т4П = 0 + 4 = 4. Для события 2 потенциал определяют следующим образом: от события 3 — Т2П = 11 + О = 11 и от события 4 — Т2П = 4

+ 3 = 7; выбирают наибольшее значение 11. Аналогичным образом рассчиты­вают остальные события. Потенциал исходного события составляет 16 дней, т.е. равен величине критического пути.

Зная потенциал события, позднее окончание работ можно определить по формуле

позднее окончание работ

Поскольку ранние начала работ записаны в левых секторах, а на графике показаны продолжительности работ, по уже приведенным формулам частного и общего резерва времени можно определить их значение.

Изменения, возникающие в ходе выполнения работ, не влияют на потен­циалы последующих событий; поэтому оперативный пересчет графика занимает мало времени. В этом заключается главное преимущество расчета методом потенциалов.

Практика построения сетевого графика

Практика построения сетевого графика

Представим себе ситуацию развития проекта капитального строительства на производственном предприятии. Проект успешно инициирован и полным ходом идут работы по его планированию. Сформирована и утверждена иерархическая структура работ, план по вехам принят. Разработан первичный вариант календарного плана. Поскольку задача оказалась достаточно масштабной, куратор принял решение о разработке еще и сетевой модели. Расчет сетевого графика в прикладном аспекте его исполнения является предметом настоящей статьи.

Перед стартом моделирования

Методологический базис сетевого проектного планирования представлен на нашем сайте несколькими статьями. Я лишь сошлюсь на две из них. Это материалы, посвященные этапу сетевого планирования проекта в целом и непосредственно моделированию сетевого графика проекта. Если в ходе повествования у вас будут возникать вопросы, просмотрите ранее представленные осмысления, основная суть методологии в них изложена. В настоящей статье мы рассмотрим небольшой пример локальной части комплекса строительно-монтажных работ в рамках значительной проектной реализации. Расчеты и моделирование будем выполнять методом «вершина-работа» и классическим табличным способом («вершина-событие») с применением МКР (метода критического пути).

Построение сетевого графика мы начнем на основе первой итерации календарного плана, выполненного в форме диаграммы Ганта. Для целей наглядности предлагаю не учитывать отношения предшествования и максимально упростить последовательность действий. Хотя на практике такое бывает редко, представим в нашем примере, что операции выстроены в последовательность вида «окончание-начало». Ниже вашему вниманию представляются две таблицы: выписка из списка работ проекта (фрагмент из 15-ти операций) и список параметров сетевой модели, необходимый для представления формул.

операции инвестиционного проекта

Пример фрагмента списка операций инвестиционного проекта

параметры для расчета сетевой модели

Список параметров сетевой модели, подлежащих расчету

Пусть вас не пугает обилие элементов. Построение сетевой модели и расчет параметров достаточно просто выполнить. Важно тщательно подготовиться, иметь под рукой иерархическую структуру работ, линейный график Ганта – в общем, все, что дает возможность определиться с последовательностью и взаимосвязями действий. Еще в первые разы выполнения графика я рекомендую иметь перед собой формулы расчета требуемых значений. Они представлены ниже.

формулы расчета сетевого графика

Формулы расчета параметров сетевого графика

Что нам потребуется определить в ходе построения графика?

  1. Раннее начало текущей работы, в которую входят несколько связей от предыдущих операций. Выбираем максимальное значение из всех ранних окончаний предыдущих операций.
  2. Позднее окончание текущего действия, из которого выходят несколько связей. Выбираем минимальное значение из всех поздних начал последующих действий.
  3. Последовательность работ, формирующих критический путь. У этих действий раннее и позднее начала равны, как и раннее и позднее окончание соответственно. Резерв такой операции равен 0.
  4. Полные и частные резервы.
  5. Коэффициенты напряженности работ. Логику формул резервов и коэффициента напряженности работы мы рассмотрим в специальном разделе.

Последовательность действий по моделированию

Шаг первый

Построение сетевого графика начинаем путем размещения прямоугольников задач последовательно слева-направо, применяя правила, описанные в предыдущих статьях. При выполнении моделирования методом «вершина-работа» основным элементом диаграммы выступает семисегментный прямоугольник, в составе которого отражены параметры начала, окончания, длительности, резерва времени и наименования или номера операций. Схема представления ее параметров показана далее.

схема работ на сетевом графике

Схема изображения работы на сетевом графике

первый этап построения сетевого графика

Результат первого этапа построения сетевого графика

В соответствии с логикой последовательности операций с помощью специализированной программы, MS Visio или любого редактора размещаем образы работ в заданном выше формате. В первую очередь заполняем наименования выполняемых действий, их номера и длительность. Рассчитываем раннее начало и раннее окончание с учетом формулы раннего начала текущего действия в условиях нескольких входящих связей. И так проходим до завершающей фрагмент операции. При этом, в нашем примере проекта тем же графиком Ганта не предусмотрены исходящие связи от операций 11, 12, 13 и 14. «Подвешивать» их на сетевой модели недопустимо, поэтому мы добавляем фиктивные связи к конечной работе фрагмента, выделенные на рисунке синим цветом.

Шаг второй

Находим критический путь. Как известно, это путь, имеющий самую большую продолжительность действий, которые в него входят. Просматривая модель, мы выбираем связи между работами, имеющими максимальные значения раннего окончания действий. Намеченный критический путь выделяем стрелочками красного цвета. Полученный результат представлен на промежуточной схеме далее.

сетевой график с критическим путем

Схема сетевого графика с выделенным критическим путем

Шаг третий

Заполняем значения позднего окончания, позднего начала и полного резерва работ. Для выполнения расчета переходим к конечной работе и берем ее за последнюю операцию критического пути. Это означает, что поздние значения окончания и начала идентичны ранним, и от последней операции фрагмента мы начинаем двигаться в обратную сторону, заполняя нижнюю строку схематического представления действия. Модель выполнения расчета показана ниже на схеме.

расчет поздних начал и окончаний

Схема расчета поздних начал и окончаний вне критического пути

итог сетевого графика

Итоговый вид сетевого графика

Шаг четвертый

Четвертым шагом алгоритма сетевого моделирования и расчетов выполняется вычисление резервов и коэффициента напряженности. Первым делом имеет смысл обратить внимание на полные резервы путей некритических направлений (R). Они определяются путем вычитания из продолжительности критического пути временной длительности каждого из этих путей, пронумерованных на схеме итогового сетевого графика.

  • R пути под номером 1 = 120 – 101 = 19;
  • R пути под номером 2 = 120 – 84 = 36;
  • R пути под номером 3 = 120 – 104 = 16;
  • R пути под номером 4 = 120 – 115 = 5;
  • R пути под номером 5 = 120 – 118 = 2;
  • R пути под номером 6 = 120 – 115 = 5.

Дополнительные расчеты модели

Выполнение расчета общего резерва текущей операции производится путем вычитания из значения позднего начала раннего начала или из позднего окончания раннего окончания (см. схему расчета выше). Общий (полный) резерв показывает нам возможность начала текущей работы позже или увеличения продолжительности на длительность резерва. Но нужно понимать, что пользоваться полным резервом следует с большой осторожностью, потому что работы, стоящие от текущего события дальше остальных, могут оказаться без запаса времени.

Помимо полных резервов в сетевом моделировании оперируют также и частными или свободными резервами, которые представляют собой разницу между ранним началом последующей работы и ранним окончанием текущей. Частный резерв показывает, есть ли возможность сдвинуть ранее начало операции вперед без ущерба для начала следующей процедуры и всему графику в целом. Следует помнить, что сумма всех частных резервных значений тождественна полному значению резерва для рассматриваемого пути.

Главной задачей выполнения вычислений различных параметров является оптимизация сетевого графика и оценка вероятности выполнения проекта в срок. Одним из таких параметров является коэффициент напряженности, который показывает нам уровень сложности реализовать работу в намеченный срок. Формула коэффициента представлена выше в составе всех расчетных выражений, применяемых для анализа сетевого графика.

Коэффициент напряженности определяется как разница между единицей и частного от деления полного резерва времени работы на разницу длительности критического пути и особого расчетного значения. Это значение включает ряд отрезков критического пути, совпадающих с максимально возможным путем, к которому может быть отнесена текущая операция (i-j). Далее помещен расчет частных резервов и коэффициентов напряженности работ для нашего примера.

расчет частных резервов и коэффициента напряженности

Таблица расчета частных резервов и коэффициента напряженности

Коэффициент напряженности варьируется от 0 до 1,0. Значение 1,0 устанавливается для работ, находящихся на критическом пути. Чем ближе значение некритической операции к 1,0, тем труднее удержаться в плановых сроках ее реализации. После того, как значения коэффициента по всем действиям графика посчитаны, операции, в зависимости от уровня этого параметра, могут быть отнесены к категории:

  • критической зоны (Кн более 0,8);
  • подкретической зоны (Кн более или равно 0,6, но менее или равно 0,8);
  • резервной зоны (Кн менее 0,6).

Оптимизация сетевой модели, нацеленная на сокращение общей продолжительности проекта, как правило, обеспечивается следующими мероприятиями.

  1. Перераспределение ресурсов в пользу наиболее напряженных процедур.
  2. Снижение трудоемкости операций, расположенных на критическом пути.
  3. Распараллеливание работ критического пути.
  4. Переработка структуры сети и состава операций.

Использование табличного метода

Общепризнанные ПП календарного планирования (MS Project, Primavera Suretrack, OpenPlan и т.п.) способны вычислять ключевые параметры сетевой модели проекта. Мы же в настоящем разделе табличным методом выполним настройку подобного расчета обычными средствами MS Excel. Для этого возьмем наш пример фрагмента проектных операций проекта в области СМР. Расположим основные параметры сетевого графика в столбах электронной таблицы.

расчет сетевого графика табличным способом

Модель расчета параметров сетевого графика табличным способом

Преимуществом выполнения расчетов табличным способом является возможность простой автоматизации вычислений и избежание массы ошибок, связанных с человеческим фактором. Красным цветом будем выделять номера операций, располагающихся на критическом пути, а синим цветом отметим расчетные позиции частных резервов, превышающих нулевое значение. Разберем пошагово расчет параметров сетевого графика по основным позициям.

  1. Ранние начала операций, следующих за текущей работой . Алгоритм расчета настраиваем на выбор максимального значения из раннего времени окончания нескольких альтернативных предыдущих действий. Взять, например, операцию под номером 13. Ей предшествуют работы 6, 7, 8. Из трех ранних окончаний (71, 76, 74 соответственно) нам нужно выбрать максимальное значение – 76 и проставить его в качестве раннего начала операции 13.
  2. Критический путь . Выполняя процедуру расчета по пункту 1 алгоритма, мы доходим до конца фрагмента, найдя значение продолжительности критического пути, которая в нашем примере составила 120 дней. Значения наибольших ранних окончаний среди альтернативных действий обозначают операции, лежащие на критическом пути. Отмечаем эти операции красным цветом.
  3. Поздние окончания операций, предшествующих текущей работе . Начиная с концевой работы начинаем движение в обратную сторону от действий с большими номерами к операциям с меньшими. При этом из нескольких альтернатив исходящих работ выбираем наименьшее знание позднего начала. Поздние начала вычисляем как разницу между выбранными значениями поздних окончаний и продолжительности операций.
  4. Резервы операций . Вычисляем полные (общие) резервы как разницу между поздними началами и ранними началами либо между поздними окончаниями и ранними окончаниями. Значения частных (свободных) резервов получаем в результате вычитания из числа раннего начала следующей операции раннего окончания текущей.

Мы рассмотрели практические механизмы составления сетевого графика и расчета основных параметров временной продолжительности проекта. Таким образом, вплотную приблизились к исследованию возможностей анализа, проводимого с целью оптимизации сетевой модели и формирования непосредственно плана действий по улучшению ее качества. Настоящая тема занимает немного места в комплексе знаний проект-менеджера и не так уж и сложна для восприятия. Во всяком случае, каждый РМ обязан уметь воспроизводить визуализацию графика и выполнять сопутствующие расчеты на хорошем профессиональном уровне.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *