Метод криптографии который кодирует информацию таким образом
Перейти к содержимому

Метод криптографии который кодирует информацию таким образом

  • автор:

Криптографические методы: назначение, средства, требования и применение

Задачи , решаемые криптографией , крутятся вокруг защиты данных пользователей и нацелены на повышение информационной безопасности в сети. Решение таких задач тесно связан о с криптографическими методами защиты информации и с криптографие й к ак наукой. Невозможно в двух словах все это описать, поэтому будем разбираться по порядку.

Что такое криптография

  • вопрос конфиденциальности информации;
  • вопрос целостности информации.

Методы криптографической защиты информации

  • шифрование;
  • стенография;
  • кодирование;
  • сжатие.
Шифрование
  • алгоритм шифрования;
  • ключ шифрования.
  • обладает стойкостью к криптоанализу и подбору ключей;
  • обеспечивает высокий уровень конфиденциальности ключа, без которого невозможно расшифровать информацию;
  • зашифрованная информация не сильно увеличивается в размерах;
  • исключено искажение информации при ее расшифровк е ;
  • алгоритмы шифрования и расшифровки не требуют много времени на сам процесс.
Стенография
  • текстовые файлы;
  • изображения;
  • аудио;
  • цифровую подпись;
  • и др.
Кодирование

Этот криптографический метод защиты информации известен очень давно. Суть его сводится к тому, что исходные сведения «подменяют» специальным и кодами. В качестве таких кодов используют сочетание букв, символов или цифр. Для удобства кодирования и раскодирования применяют специальные таблицы, где записаны правила кодирования, то есть какой символ на что заменяется.

Неопытные пользователи часто путают кодирование и шифрование. Это неправильно, потому что это два разных подхода к защите информации. Чтобы раскодировать информацию, необходимо знать или выяснить инструкции , по которым происходит подмена символов. А чтобы расшифровать информацию , необходимо знать инструкции подмен ы ( алгоритм шифрования) и ключ к расшифровке, что усложняет процесс расшифровки и улучшает безопасность информации.

Сжатие

Сжатие относят к криптографическим методам защиты информации, хотя оно используется всего лишь для уменьшения объема самой информации. Сжатая информация не может быть прочитана или применяться, пока не будет осуществлен обратный процесс. Но «обратный процесс» является распространенным и доступным способом обработки сжатой информации. Поэтому сжатие — это больше о сокращении объема сведений, чем о их защите.

Если представить, что вы разработали собственный алгоритм сжатия, спустя время данный алгоритм станет доступным общественности и ваши сжатые «конфиденциальные» файлы станут неконфиденциальными. Сегодня существуют различные методы обработки сжатой информации, которым подвластны даже «уникальные» алгоритмы сжатия.

Поэтом у е сли говорить о безопасности информации, то сжатие часто применяют в паре с шифрованием.

С основными методами шифрования мы познакомились , но где они применяются в повседневной жизни? Или какие задачи, решаемые криптографией, человек применя е т в своей жизнедеятельности?

Задачи, решаемые криптографией

  1. Достижение высокой конфиденциальности сведений. Это направление предотвращает несанкционированный доступ к информации, применяя передовые методы шифрования, которые невозможно «взломать».
  2. Достижение надежной целостности сведений. Решение этой задачи гарантирует, что в процессе передачи информации между пользователями или устройствам и и нформация не видоизменялась. То ест ь н икто не мог модифицировать передаваемую информацию в момент ее передачи: что-то удалить, подменить, вставит ь и др.
  3. Аутентификация пользователей. Решение этой задачи гарантирует качественную проверку подлинности пользователей, желающих воспользоваться каким-то веб-ресурсом или какой-то программой от своего лица.
  4. Электронная подпись и электронные договор ы . Эта задач а решает проблему отказа пользовател ей от совершенных ими действий в сети. Если пользователем в сети был подписан электронный договор при помощи цифровой подписи, тогда это действие приравнивается к подписанию обычного договора обычной подписью. Отказаться от цифровой подписи невозможно.
  • аутентификация в соцсетях и прочих веб-ресурсах;
  • общение в мессенджерах, применяющих сквозное шифрование;
  • оплата в интернет — магазинах при помощи банковских карт;
  • безопасная передача данных между веб-ресурсами или между «клиентом» и сервером;
  • хранение информации в собственном компьютере или в облачных хранилищах;
  • покупка/продажа криптовалюты;
  • собственная цифровая подпись;
  • и другое.

Заключение

Задачи, решаемые криптографией, используются везде, где есть интернет, информация и необходимость передать эту информацию. Криптография — это древняя наука, однако максимальную популярность она стала набирать в наше время. Проблемы с безопасностью в сети есть , и они обширны, поэтому криптографи и к ак науке есть куда развиваться. Например, ежегодно от рук хакеров страдают тысячи веб-ресурсов и компаний, которые теряют сотни миллионов долларов из-за брешей в безопасности. Криптография развивается, но вместе с ней развиваются и алгоритмы обхода методов ее защиты. Эта «борьба» будет продолжаться постоянно.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Метод криптографии который кодирует информацию таким образом

Шифрование — это способ сокрытия исходного смысла сообщения или другого документа, обеспечивающей искажение его первоначального содержимого. Преобразование обычного, понятного содержимого в код называется кодированием. При этом подразумевается, что имеется взаимное однозначное соответствие между символами текста и кода – в этом и заключается основополагающее отличие кодирования от шифрования. Часто кодирование и шифрование ошибочно принимают за одно и тоже, забыв о том, что для восстановления закодированного сообщения, достаточно знать правило замены, в то время как для расшифровки уже зашифрованного сообщения помимо знания правил шифрования, требуется ключ к шифру. Под ключом в данном случае подразумевается конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Зашифровать можно не только текст, но и различные данные – от файлов баз данных и текстовых процессоров до файлов изображений.

Человечество использует шифрование с того момента, как появилась первая секретная информация — такая, доступ к которой не должен быть публичным.

Суть шифрования заключается в предотвращении просмотра исходного содержания сообщения теми, у кого нет средств его дешифровки.

Шифрование появилось около четырех тысяч лет тому назад. Первым известным примером шифра считается египетский текст, созданный примерно в 1900 г. до н. э., в котором вместо обычных для египтян иероглифов использовались не совпадающие с ними символы.

Один из самых известных методов шифрования является метод Цезаря, который римский император если и не изобрел, то, по крайней мере, активно им пользовался. Не имея доверия к своим посыльным, он шифровал письма элементарной заменой А на D, В на Е и так далее по латинскому алфавиту. К примеру, при таком кодировании последовательность ABC была бы записана как DEF.

Спустя пол века шифрование стало использоваться уже повсеместно при составлении текстов религиозного содержания, молитв и важных государственных документов.

Со средних веков и до наших дней необходимость шифрования военных, дипломатических и государственных документов стимулировало развитие криптографии. Сегодня потребность в средствах, обеспечивающих безопасность обмена информацией, многократно возросла.

Основные термины и определения криптографии

Криптография дает возможность преобразовать исходную информацию таким образом, что ее восстановление возможно только при знании ключа.

Некоторые основные понятия и определения.

Алфавит — законченное множество используемых для кодирования информации символов.

Текст — упорядоченный последовательность из символов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

  • алфавит Z33 — 32 буквы русского алфавита и пробел;
  • алфавит Z256 — символы, входящие в стандартные кодировки ASCII и КОИ-8;
  • бинарный алфавит — Z2 = ;
  • восьмеричный алфавит или шестнадцатеричный алфавит;

Шифрование — процесс преобразования исходного текста (который носит также название открытого текста) в зашифрованный.

Дешифрование — обратный шифрованию процесс. На основе ключа зашифрованный текст преобразуется в исходный.

Ключ — информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. Составные этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K — это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптографичекие системы делят на симметричные и ассиметричные(шифрование с открытым ключом) .

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

В системах с открытым ключом используются два ключа — открытый и закрытый, которые математически связаны друг с другом. Содержание шифруется при помощи открытого ключа, который находится в свободном доступе, а расшифровывается при помощи закрытого ключа, известного только адресату сообщения.

Понятия распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Цифровой подписью является присоединенное к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью является характеристика шифра, определяющая его стойкость к дешифрованию без наличия ключа (криптоанализу). Существует несколько факторов криптостойкости, например:

  • общее количество всех возможных ключей;
  • среднее время, необходимое для дешифрования сообщения.

Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация характеризуется значительно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, безопасность и т.п. Программная реализация более практична, допускает определенную гибкость в эксплуатации.

Для современных криптографических систем информационной безопасности определены следующие общие требования:

  • зашифрованное сообщение должно быть возможно расшифровать только при наличии ключа;
  • количество операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста должно быть не меньше общего числа возможных ключей;
  • количество операций, требуемых для дешифрования сообщения путем перебора всех возможных ключей должно иметь строго определенную нижнюю оценку и выходить за черту возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);
  • знание примененного алгоритма шифрования не должно влиять на надежность защиты;
  • незначительное изменение ключа должно приводить к значительному изменению вида зашифрованного сообщения;
  • элементы структуры алгоритма шифрования должны оставаться неизменными;
  • дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;
  • длина зашифрованного текста должна равняться длине исходного сообщения;
  • не допустимо использование очевидных и легко устанавливаемых зависимостей между ключами, последовательно используемыми в процессе шифрования текста;
  • каждый ключ из множества возможных должен обеспечивать надежную защиту информации;
  • алгоритм шифрования должен допускать как программную, так и аппаратную реализацию, а изменение длины ключа не должно приводить к понижению криптостойкости алгоритма.

Криптографические средства защиты: что это такое

Рассказываем, что такое СКЗИ, какие они бывают и как регулируются законом.

Эта инструкция — часть курса «Введение в сетевую безопасность».

Смотреть весь курс

Изображение записи

Криптографическое шифрование данных — это процесс преобразования информации с помощью кодирования.

Сообщение шифруется с помощью специального алгоритма (ключа) и отправляется получателю. Получатель, в свою очередь, использует аналогичный алгоритм расшифровки. В итоге информация защищена от получения третьими лицами и возможного использования ее злоумышленниками.

В современном мире этот метод технологии шифрования называется симметричным криптографическим ключом.

Цели и методы криптографической защиты информации

Цель криптографической защиты — обеспечение конфиденциальности и защиты информации в сетях в процессе ее обмена между пользователями.

Криптографическая защита информации в основном используется при:

  • обработке, использовании и передаче информации,
  • обеспечении целостности и достоверности целостности (алгоритмы электронной подписи),
  • алгоритмах, обеспечивающих аутентификацию пользователей или устройств, а также при защите элементов аутентификации.

Классы криптографической защиты информации

Криптографию можно разделить на три различных типа:

  • криптография с секретным ключом,
  • криптография с открытым ключом,
  • хеш-функции.

Симметричная криптография

Криптография с секретным ключом, или симметричная криптография, использует один ключ для шифрования данных. И для шифрования, и для дешифровки в симметричной криптографии используется один и тот же ключ. Это делает данную форму криптографии самой простой.

Криптографический алгоритм использует ключ в шифре для шифрования данных. Когда к данным нужно снова получить доступ, человек, которому доверен секретный ключ, может расшифровать данные.

Криптография с секретным ключом может использоваться как для данных, которые передаются в мети на данный момент, так и для данных в состоянии покоя — на носителе. Но обычно она используется только для данных в состоянии покоя, поскольку передача секрета получателю сообщения может привести к компрометации.

Пример алгоритмов симметричной криптографии:

Как происходит симметричное шифрование

Асимметричная криптография

Криптография с открытым ключом, или асимметричная криптография, использует два ключа для шифрования данных. Один из них используется для шифрования, а другой ключ расшифровывает сообщение. В отличие от симметричной криптографии, если один ключ используется для шифрования, этот же ключ не может расшифровать сообщение, для этого используется другой ключ.

Один ключ хранится в тайне и называется «закрытым ключом», а другой — «открытый ключ» — находится в открытом доступе и может быть использован любым человеком. Закрытый ключ должен оставаться только у владельца. Открытый ключ может быть передан другому человеку.

Примеры алгоритмов асимметричной криптографии:

Как происходит асимметричное шифрование

Хеш-функции

Хеш-функции — это необратимые, односторонние функции, которые защищают данные ценой невозможности восстановить исходное сообщение.

Хеширование — способ преобразования заданной строки в строку фиксированной длины. Хороший алгоритм хеширования будет выдавать уникальные результаты для каждого заданного входа. Единственный способ взломать хеш — попробовать все возможные входы, пока не получится точно такой же хеш. Хеш может использоваться для хеширования данных (например, паролей) и в сертификатах.

Примеры алгоритмов хэширования:

Требования при использовании СКЗИ

На территории Российской Федерации регулирующим органам в вопросах информационной безопасности является ФСБ России. Типовые требования обеспечения и организации работы криптографических средств для материалов, не содержащих государственную тайну и используемых в процессе обработки персональных данных, были утверждены в ФЗ-149 (2008 г.).

В нем закреплен свод правил для урегулирования создания криптографических средств защиты информации и их применения.

Закон регулирует отношения, возникающие при:

  • осуществлении права на поиск, получение, передачу, производство и распространение информации,
  • применении информационных технологий,
  • обеспечении защиты информации.

Также этот закон включает:

  • четкое разъяснение понятий информации, а также прав доступа к ней, возможного ее носителя, его обязанностей и возможностей и допустимых действий с этой информацией,
  • описание особенности государственного регулирования в сфере информационных технологий,
  • описание ответственности за правонарушения в сфере действия данного законодательства.

Стоит отметить, что, несмотря на срок выпуска документа, информация в нем регулярно обновляется в соответствии с актуальными мировыми тенденциями в рамках информационной безопасности. Подробнее с видом документа можно ознакомиться по ссылке.

А что за границей?

Одним из примеров требований по защите информации на Западе можно назвать стандарты GO-ITS (The Government of Ontario Information Technology Standards). Согласно им, криптографические материалы должны быть надежно защищены, включая создание, хранение, распространение, использование, отзыв, уничтожение и восстановление ключей.

Требования подразделяются на различные области:

Образование и обучение. Технический персонал, который разрабатывает, внедряет или управляет системами, должен быть осведомлен о требованиях к криптографии в соответствии со стандартом.

Информация в хранилище. Чувствительная информация должна быть зашифрована при хранении или храниться в оперативном режиме с использованием безопасных хэш-функций. Зашифрованные конфиденциальные данные, хранящиеся более двух лет, должны быть зашифрованы. Если ответственность за зашифрованные данные передается другой организации, данные должны быть зашифрованы повторно, с помощью нового ключа.

Мобильные устройства, такие как смартфоны, планшеты, съемные носители, портативные компьютеры, которые обрабатывают или хранят конфиденциальные данные, должны шифровать все хранилище устройства. Если конфиденциальные данные хранятся на настольных компьютерах, эти данные должны быть зашифрованы. Чувствительные данные должны быть зашифрованы на уровне столбцов или полей/ячеек данных перед записью в хранилище данных.

Безопасность коммуникаций. Чувствительная информация должна быть зашифрована при передаче с помощью соответствующих средств. Целостность конфиденциальных данных должна проверяться с помощью утвержденного кода аутентификации сообщения или цифровой подписи. Цифровые подписи должны использовать точную временную метку из доверенного источника времени.

Развертывание криптографии. Все приложения криптографии должны использовать генератор случайных чисел или генератор псевдослучайных чисел; проверять действительность сертификатов и использовать только действительные сертификаты. Приложения должны безопасно удалять расшифрованную информацию, хранящуюся в кэше или временной памяти, сразу после завершения соответствующей деятельности. Приложения, обрабатывающие конфиденциальные данные и имеющие к ним доступ, должны проходить тестирование и оценку безопасности (STE) перед внедрением.

Защита криптографических материалов. Доступ к криптографическим материалам должен быть ограничен авторизованными пользователями, приложениями или службами. Криптографические ключи должны быть защищены в соответствии с чувствительностью информации, которую они защищают. По возможности ключи должны генерироваться с помощью защищенного программного модуля или аппаратного модуля безопасности. Для генерации ключей, защищающих конфиденциальную информацию, модули должны быть локальными.

Работа СКЗИ и их применение

Принцип работы средств защиты криптографической информации заключается в следующем:

  • Пользователем создается документ, требующий пересылки.
  • С помощью ключа и средств защиты криптографической информации (специальных программ) к документу прибавляется специальный файл подписи, после чего они отправляются получателю.
  • Получатель декодирует файл при помощи средств защиты криптографической информации и проверяет, что в расшифрованный документ не вносились изменения.

Основными функциями средств (СКЗИ) являются:

  • создание электронных подписей,
  • проверка подлинности ЭП,
  • шифровка и дешифровка содержимого документа.

Виды СКЗИ для электронной подписи — программные и аппаратные СКЗИ

Электронная подпись (ЭП) – это специальные реквизиты документа, позволяющие подтвердить принадлежность определенному владельцу, а также отсутствие факта внесения изменений в документ с момента его создания. ЭП можно сравнить со средневековой восковой печатью, ставившейся на важные письма.

На данный момент существуют два вида средств, применяемых при криптографической защите информации: отдельно устанавливаемые программы и встроенные в устройство.

К первому типу относятся следующие программы:

  • КриптоПро CSP,
  • Signal-COM CSP,
  • VipNet CSP.

Они работают с основными ОС и сертифицированы в соответствии с актуальными ГОСТами. Основным их минусом является лицензирование: придется платить деньги за приобретение лицензии для каждого нового устройства.

К вшитым в устройство программам относятся:

  • Рутокен ЭЦП,
  • Рутокен ЭЦП 2.0,
  • JaCArta SE.

Используя данный тип СКЗИ, пользователь решает главную проблему предыдущего класса. Здесь устройству достаточно иметь доступ к сети, так как процесс шифрования и дешифровки производится внутри носителя. Основным правовым фактором, регулирующим деятельность в этой сфере, является ФЗ-63, подробнее о котором можно прочитать здесь.

Области использования электронной подписи

От пользователя может быть нужен как базовый сертификат, так и квалифицированный, в котором содержится специальный идентификатор. Квалифицированная электронная цифровая подпись отличается повышенной защищенностью.

Электронная отчетность. Это одна из главных сфер, где используется электронная подпись. При этом имеется в виду отчетность, которая предоставляется в различные государственные структуры: ФСС, ПФР, ФНС и прочие. При отправке документов требуется квалифицированный сертификат ЭП, который предоставляется уполномоченному сотруднику организации.

Системы госзакупок для различных бюджетных организаций. Они проводятся посредством аукционов, где требуется квалифицированная ЭП (на основании ФЗ-44 от 14.07.22) для подписания контрактов и прочих действий.

Электронный документооборот между компаниями (в случае подписания счет-фактуры). Здесь юридическую силу документа также гарантирует только квалифицированная ЭП.

На этом список применения ЭП не заканчивается: она также требуется для работы с порталами госструктур, таких как РКН, Госуслуги, Единый федеральный реестр сведений о банкротстве, Росимущество и прочих.

Алгоритмы электронной подписи

Целью цифровых подписей является аутентификация и проверка подлинности документов и данных. Это необходимо, чтобы избежать цифровой модификации (подделки) при передачи официальных документов.

Как правило, система с асимметричным ключом шифрует с помощью открытого ключа и расшифровывает с помощью закрытого ключа. Однако порядок, шифрующий ЭП, обратный. Цифровая подпись шифруется с помощью закрытого ключа, а расшифровывается с помощью открытого. Поскольку ключи связаны, расшифровка с помощью открытого ключа подтверждает, что для подписания документа был использован соответствующий закрытый ключ. Так проверяется происхождение подписи.

Проверка происхождения подписи

  • M — Обычный текст,
  • H — хеш-функция,
  • h — хеш-дайджест (хеш-сумма, также называемая дайджестом — в криптографии результат преобразования входного сообщения произвольной длины в выходную битовую строку фиксированной длины),
  • + — объединить и открытый текст, и дайджест,
  • E — шифрование,
  • D — расшифровка.

На изображении выше показан весь процесс — от подписания ключа до его проверки.

Рассмотрим каждый шаг подробнее:

  1. М, исходное сообщение сначала передается хеш-функции, обозначаемой H#, для создания дайджеста.
  2. Далее сообщение объединяется с хеш-дайджестом h и шифруется с помощью закрытого ключа отправителя.
  3. Он отправляет зашифрованный пакет получателю, который может расшифровать его с помощью открытого ключа отправителя.
  4. После расшифровки сообщения оно пропускается через ту же хэш-функцию (H#), чтобы сгенерировать аналогичный дайджест.
  5. Он сравнивает вновь сгенерированный хеш со свернутым хеш-значением, полученным вместе с сообщением. Если они совпадают, проверяется целостность данных.

Существует два стандартных для отрасли способа реализации вышеуказанной методологии: алгоритмы RSA и DSA. Оба служат одной и той же цели, но функции шифрования и дешифровки довольно сильно отличаются.

Что такое алгоритм RSA?

Алгоритм RSA — это алгоритм подписи с открытым ключом, разработанный Роном Ривестом, Ади Шамиром и Леонардом Адлеманом. Статья с описанием алгоритма была впервые опубликована в 1977 году. Он использует логарифмические функции для того, чтобы работа была достаточно сложной, чтобы противостоять перебору, но достаточно упрощенной, чтобы быть быстрой после развертывания. На изображении ниже показана проверка цифровых подписей по методологии RSA.

Проверка ЭП по методологии RSA

RSA также может шифровать и расшифровывать общую информацию для безопасного обмена данными наряду с проверкой цифровой подписи. На рисунке выше показана вся процедура работы алгоритма RSA.

Что такое алгоритм DSA?

Алгоритм цифровой подписи — это стандарт FIPS (Федеральный стандарт обработки информации) для таких подписей. Он был предложен в 1991 году и всемирно стандартизирован в 1994 году Национальным институтом стандартов и технологий (NIST). Алгоритм DSA обеспечивает три преимущества:

  • Аутентификация сообщения. Вы можете проверить происхождение отправителя, используя правильную комбинацию ключей.
  • Проверка целостности. Вы не можете подделать сообщение, так как это полностью предотвратит расшифровку связки.
  • Неотрицание. Отправитель не может утверждать, что он никогда не отправлял сообщение, если верифицирует подпись.

Проверка ЭП по методологии DSA

На рисунке выше показана работа алгоритма DSA. Здесь используются две различные функции — функция подписи и функция проверки. Разница между изображением типичного процесса проверки цифровой подписи и изображением выше заключается в части шифрования и дешифровки.

Правовое регулирование применения криптографических средств в РФ

Основным регулирующим документом является ФЗ-149. Однако он по большей части определяет участников процесса и их действия. Самим же объектом взаимодействия являются персональные данные пользователей — любая информация, относящаяся прямо или косвенно к определенному физическому лицу. Положения о персональных данных, в том числе общедоступных персональных данных, оговорены в ФЗ-152.

Аттестованный сегмент ЦОД

Храните данные в соответствии с 152-ФЗ.

Этими законами определяется, что проводимые действия должны быть реализованы в данных подсистемах:

  • управления доступом,
  • регистрации и учета,
  • обеспечения целостности,
  • криптографической защиты,
  • антивирусной защиты,
  • обнаружения вторжений.

Также вся деятельность, связанная с оказанием услуг в сфере криптографической защиты, подлежит лицензированию, которая осуществляется ФСБ РФ. К требованиям лицензирования относится следующее:

  • Присутствие в организации специальных условий для соблюдения работы.
  • Наличие у компании лицензии на выполнение работ и оказание услуг при работе со сведениями, составляющими гостайну (например, создание средств криптозащиты).
  • Присутствие в штате компании квалифицированных сотрудников, имеющих специальное образование (обучение или переподготовка по направлению «Информационная безопасность») и опыт работы в сфере не менее пяти лет.
  • Предоставление ФСБ РФ лицензии и перечня используемых в работе СКЗИ со всей технической информацией.

К СКЗИ относятся следующие средства:

  • шифрования,
  • имитозащиты,
  • ЭП,
  • средства кодирования,
  • ключевые документы и средства для их изготовления,
  • аппаратные, программные и аппаратно-программные СКЗИ.

Некоторые СКЗИ бывают выведены из-под лицензирования. В их числе средства, применяемые для ИП или для собственных нужд юридических лиц. Подробнее об этом можно узнать непосредственно в ФЗ.

Защита криптографической информации в коммерческой деятельности

Современные предприятия хранят и управляют большей частью своей личной и конфиденциальной информации в режиме онлайн — в облаке с бесперебойным подключением к сети. Именно по этой причине компании включают шифрование в свои планы по обеспечению безопасности облачных данных. Им важно сохранить конфиденциальность и безопасность своих данных независимо от их местонахождения.

Для решения этой задачи применяются различные устройства шифрования, приборы защиты телефонии. СКЗИ применяется для офисного оборудования, такого как факсы, телекс или телетайп. Также в коммерческой отрасли применяется система электронных подписей, упомянутая выше.

Использование шифровальных криптографических средств в современном мире

Криптографическая защита информации и персональных данных является неотъемлемой частью любой информационной деятельности. В данный момент на рынке представлено множество средств для решения этой задачи. Среди них КриптоПро CSP, Signal-COM CSP, РуТокен ЭЦП и некоторые другие программы, рассмотренные в данном материале.

Область создания и применения СКЗИ находится под непосредственным контролем ФСБ РФ и ФСТЭК — любая информационная система согласовывается с этими органами.

Как просканировать сетевой периметр сервиса с помощью open source-инструментов

От шифрования до цифровой безопасности: что такое криптография

Когда мы совершаем онлайн-покупки, пишем сообщения в мессенджере или передаем любую конфиденциальную информацию в сети, нам важно знать, что наши данные надежно защищены и не будут использованы для преступных целей. Именно криптография помогает сохранить личные сведения в целостности с помощью разных методов шифрования.

Криптография — это наука о защите данных, которая использует техники шифрования для обеспечения безопасности информации. Если объяснять простыми словами, то процесс шифрования выглядит так: отправитель кодирует данные и передает ключ получателю, с помощью которого он может их расшифровать.

Распространенные методы криптографии

Шифрование — это процесс преобразования исходных данных в непонятный вид для посторонних. Для того чтобы открыть такой файл, необходим ключ, который предназначен для расшифровки. Кодировать информацию можно разными способами, например, симметричным, асимметричным, гибридным или хеш-функциями — разберем каждый подробнее.

  1. Симметричное шифрование — метод, в котором создают один ключ для кодирования и дешифрования данных. Это легкий и удобный способ, но считается не самым надежным, так как о ключе знает и отправитель, и получатель.
  2. Асимметричное шифрование — алгоритм, в котором применяются два разных секретных ключа: открытый и закрытый. Открытый ключ нужен для кодирования данных, а закрытый — для их дешифрования. Этот метод более безопасный в отличие от прошлого: закрытый ключ держится в тайне и доступен только получателю.
  3. Гибридное шифрование — это сочетание двух предыдущих методов. Процесс кодирования начинается с использования открытого ключа для скрытия сообщения. Затем этот ключ шифруется с помощью другого открытого ключа, но для его расшифровки требуется закрытый ключ, который известен лишь получателю.
  4. Хеш-функции — этот метод интересен тем, что закодированные данные нельзя расшифровать. Его используют для хранения паролей, цифровых подписей или другой конфиденциальной информации. Например, когда пользователь вводит пароль для доступа к своему личному кабинету, система применяет хеш-функцию к паролю и сравнивает полученный хеш с хешем, хранящимся в базе данных. Если они совпадают, то пользователь получает доступ к личному кабинету. Если нет, то ему отказывают.

Пройдите онлайн-курсы бесплатно и откройте для себя новые возможности Начать изучение

Криптография используется повсюду: в онлайн-банкинге, электронной почте, мессенджерах, социальных сетях и даже в умных домах. Ее главная задача — защитить данные от несанкционированного доступа, изменения или копирования.

Если вы мечтаете создать инновационные продукты с применением искусственного интеллекта, которые помогут изменить мир в лучшую сторону, то вам точно будет интересен наш проект «Цифровой прорыв. Сезон: искусственный интеллект». В хакатонах ИТ-специалисты вместе решают бизнес-проблемы за ограниченное время. По итогам соревнований можно выиграть грант на создание собственного инновационного предприятия или открытой библиотеки в сфере ИИ.

Читайте нас в Telegram — stranavozmojnostey Поделиться в социальных сетях

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *